HE
18.5
no.
DOT -
TSC-
NHTSA
79-37
c. 2

LIGHT DUTY TRUCK CHARACTERISTICS, HISTORICAL DATA BASE

C. CANTWELL
CHILTON COMPANY
201 King of Prussia Road Radnor PA 19089

DEFATMETTOF TRASSPCRTATIOM

FEBL二198

DECEMBER 1979
FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

```
            Prepared for
            U.S, DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
    Office of Research and Development
        Washington DC 20590
```


NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

$\begin{aligned} & \text { 1. Report No. } \\ & \text { DOT-HS }-804.787 \end{aligned}$	2. Government Accession No.	3. Recipient's Cotolog No.
```4. Titie ond Subtine TRUCK CHARACTERISTICS, HISTORICAL DATA BASE```		5. Report Dote December 1979
		6. Performing Organizotion Code
7. Author's)C. Cantwell		B. Paftormins Orgonizotion Refor No. DOT-TSC-NHTSA-79-37
9. Periforming O.gonizotion Nome ond Addess Chilton Company* 201 King of Prussia Road Radnor PA 19089		$\begin{aligned} & \text { 10. Work Unit No (TRAIS) } \\ & H S 027 / R 0404 \end{aligned}$
		11. Controct or Gront No. DOT-TSC-1338
		13. Typeof Repor ond Period GovesedFinal ReportMarch 1977 to Novil 1977
12. Sponsoring Agency Nome ond Address   U.S. Department of Transportation   National Highway Traffic Safety Administration Office of Research and Development Washington DC 20590		
15. Supplementary Noies   *Under contract to:	U.S. Department of T Research and Special Transportation Syste Cambridge MA 02142	ransportation   Programs Administration   ms Center

16. Abstroct

This report is a collection of data concerning physical, operating, performance, and market characteristics of light duty trucks for the model years 1972 and 1975 thru 1977. The data is stored on tape in DOT/TSC DEC System 10 computer system. Information was collected from published and unpublished sources with extrapolation and correlations being made when raw data was not available.

Vehicles are reported by model year and grouped by manufacturer using production volume, model, body type, engine displacement, transmission and GWNR class attributes as criteria to select representative vehicle configurations. Models which are essentially duplicated by more than one division of a manufacturer--i.e., Chevrolet C-10 and GMC C-1500--are represented by attributes of only one of the duplicate models. Production volume for both models is then combined.

Characteristics are documented for vehicles representative of total U.S. sales of domestic and imported light duty trucks for the model years indicated.

17. Key Words   Light Duty Truck   Characteristics Dat	18. Distribution Stotement   document is available to the publio through the national technical information service. springField. VIRGINIA 22161		
19. Security Clossif. (of this report) Unclassified	20. Security Clossif. (of this poge) Unclassified	$\begin{aligned} & \text { 21. No. of Poges } \\ & 60 \end{aligned}$	22. Fince

Form DOT F 1700.7 (8-72)
Reproduction of completed page outhorized

## PREFACE

The work included in this project greatly enhances the research and development program at the Transportation Systems Center and is aimed at providing an information base for standards-setting deliberations. The data collected will help the Government to understand historical changes and to develop a forecasting model to help determine the impact of potential fuel economy standards.
methic conversion factors


Approximate Conversions to Meltic Mensures

Spmbol	Whon You Know	Mutipiply tr	In Find	Symbal
	IENGTH			
in	Inchos	$\cdot 2.5$	contimeters	cm
"	1 log	30	cintimetor	cm
rd	rards	0.9	matars	m
mi	milos	1.6	kilamoter!	km
	AREA			
$\begin{aligned} & n^{2} \\ & n^{2} \\ & r^{d^{2}} \\ & m 1^{2} \end{aligned}$	tquers Inchos	8.5	arubro centumeters	$\mathrm{cm}^{2}$
	*quere lost	0.09	arume melar	
	-quase rends	0.4	-quase meterer	$\mathrm{m}^{2}$
	squase milles	2.6	muers kilomverat	$\mathrm{km}^{2}$
	-crer	0.9	brictars:	hn
MASS (weight)				
inin	ounce 1	28	groms	
	pound:	0.45	kilogrome	kg
	show tons (2000 th)	0.9	tomnao	1
	volume			
$13 p$	leospoon:	5	millilier	ml
Hisp	inberpoont	15	millilitiors	ml
10	Huth concea	30	millitiors	m'
	cups	0.24	Hitare	1
$p 1$	plots	0.47	liters	1
ワ	quarı	0.95	litan	1
gn'	Oallons	3.6	liters	',
$\mathrm{vd}^{3}$	cubic foot	0.03	clubic metors	$\mathrm{m}^{3}$
	cutic yand	0.16	cubic netens	$\mathrm{m}^{\mathbf{3}}$
	IEmPERATUAE (execi)			
$\bullet$	Fohronhele temporstiors	$5 / 9$ fafier orbbracting 321	Culsina Temperature	${ }^{\circ} \mathrm{C}$

Section Page

1. INTRODUCTION ..... 1
1.1 General ..... 1
1.2 Background ..... 1
1.3 Scope ..... 2
1.4 Limitations ..... 2
2. METHODOLOGY ..... 4
2.1 General ..... 4
2.2 Vehicle Selection ..... 4
2.2.1 Selection Parameters ..... 4
2.2.2 Selection Example ..... 6
2.3 Vehicle Attribute Definitions ..... 14
2.4 Data Base Development ..... 23
2.4.1 Data Research ..... 25
2.4.2 Fuel Economy ..... 25
2.4.3 Vehicle Performance ..... 27
2.5 Attribute Information Sources ..... 27
2.6 Collation and Data Processing ..... 33
3. CONCLUSIONS ..... 49
4. RECOMMENDATIONS ..... 50
APPENDIX A - REPORT OF NEW TECHNOLOGY ..... 51

## LIST OF ILLUSTRATIONS

Figure Page
2-1. MANUFACTURERS PRODUCTION DATA SHEET - DODGE ..... 11
2-2. MANUFACTURERS PRODUCTION DATA SHEET - PLYMOUTH ..... 12
LIST OF TABLES
Table Page
2-1. PRODUCTION TOTALS ..... 6
2-2. COMBINED PRODUCTION TOTAL ..... 7
2-3. INITIAL NINE (9) CONFIGURATIONS FOR 1976 DODGE/ PLYMOUTH VANS ..... 8
2-4. FINAL VEHICLE CONFIGURATIONS SELECTED FOR 1976 DODGE/PLYMOUTH VANS ..... 9
2-5. STRUCTURE DEFINITION SHEET ..... 34
2-6. FILE DESCRIPTION ..... 35
2-7. ATTRIBUTE CODE LIST ..... 42
2-8. CODE TABLES ..... 46
2-9. BODY CLASS DEFINITIONS DOT LIGHT DUTY TRUCK DATA BASE ..... 48

Abbreviation
AM
CID
EPA
FM
GVWR
LDT
MPH
N.A

N/V

RPM
STD
TSC
WD

Definition
Amplitude Modulation
Cubic Inch Displacement
Environmental Protection Agency
Frequency Modulation
Gross Vehicle Weight Rating
Light Duty Truck(s)
Miles per hour
Not Applicable
Ratio of engine speed (RPM) to vehicle speed (MPH)
Revolutions per minute
Standard
Transportation Systems Center
Wheel Drive as 2 Wheel Drive

### 1.1 GENERAL

The information presented and discussed in this report is the result of an extensive, in-depth research effort directed toward the compilation of pertinent information relating to all domestic and imported light duty trucks sold in the United States during the 1977 , 1976, 1975 and 1972 model years.

The information produced by this research project constitutes an historical data base similar to the TSC data base previously developed for passenger cars. This historical data base may be used as a means of defining light duty truck characteristics during the time period covered by the project (1972, 1975, 1976, and 1977).

The background, scope, limitations, methodology, conclusions and recommendations sections follow.

### 1.2 BACKGROUND

The light duty truck ( $10,000 \mathrm{lb}$. GVWR and below), after many years as an unpretentious small work vehicle, has begun an evolutionary period. The myriad changes that have occurred during the past two decades have dramatically altered the character, use, population, and market penetration of the light duty truck. The changes have ranged from subtle styling alterations to proliferations of models, body types, drivetrain variations, and accessory options. These changes, due to normal market forces, changing transportation requirements, and federal regulations have created a need to understand what changes have occured during the past several years. Such knowledge, coupled with additional knowledge in areas such as prevailaing economic forces, transportation regulations, etc. can be used to predict what may happen to this light duty truck market as influencing factors change.

This need to understand the changes in light duty trucks establishes the requirement for this project to present an historical data base for light duty trucks for the 1972 and 1975 through 1977 model years to show recent years trends in the light duty truck market. The approximately 60 attributes for each representative light duty truck, sold domestically for these model years, constitute a meaningful and useful data base.

### 1.3 SCOPE

The objective of this project is to procure and present data pertaining to specified characteristics for subject model years. The physical, operating, performance, and production characteristics are gathered for all domestically manufactured and imported light duty trucks that were sold in the United States during the 1972 and 1975 through 1977 model years. Each vehicle configuration is defined by approximately 60 attributes.

The work is divided into two main areas. The first area includes vehicle selection, attribute selection, attribute definitions, and format. The second area includes data collection, correlation, and collation. Data is presented on tape and is loaded into the DOT/TSC DECIO Computer System.

The information was gathered from trade publications, direct contact with manufacturers, unpublished sources, specialized testing reports, the Environmental Protection Agency, and trade associations.

### 1.4 LIMITATIONS

The lack of published sources of information for certain attributes necessitated the use of unpublished, but reliable, sources (such as Auto Manufacturers Data Books), and some extrapolation or expansion of hard data. The model year 1977 sales figures are projected since the completion date of the project is prior to the end of the model year. Accessory attributes could not be aligned with a particular model/engine/transmission configuration, so they apply to the model configuration as a whole.

No EPA fuel economy data was available for the 1972 model year for light duty trucks. Some road-test mileage information was used in the few instances where the tested configuration matched a configuration of this study. When used, technical judgements were applied to match the road test data to the 1975 EPA CVS-1 cycle. No fuel economy data was available from the EPA for GVWR configurations over 6,000 pounds. There is less available EPA fuel economy data for 1975 Ford vehicles that for other major manufacturers. Some road test data was used to supplement the EPA 1975, 1976 and 1977 data, but this use was minimal. Data presented in the data base reflects these limtations.

### 2.1 GENERAL

The light duty truck is a complex and diverse vehicle, intended for a multitude of utilitarian and recreational activities. These many uses create a potential for engine/transmission/model configurations that number into the thousands for each model year. The incorporation of every engine/transmission/model configuration into the data base is beyond the scope of this project. However, the requirements for the data base allow a selected vehicle sampling to represent a specific model year fleet. All domestic and imported vehicles that fit the requirements are included in the data base for the model years 1972 and 1975 through 1977.

The means of reducing the many possible variations to the selected list of meaningful configurations was established after a thorough inspection of published and non-published information and a thorough discussion with DOT/TSC personnel.

For the following discussion, a vehicle "make" refers to a manufacturer, and a vehicle "model" refers to a vehicle series designation of that manufacturer. For example; Ford, Dodge, and Chevrolet are makes, and Ford F100, Dodge D100, and Chevrolet ClO are models.

### 2.2. VEHICLE SELECTION

### 2.2.1 Selection Parameters

The parameters used for selecting the vehicle configurations representing each of the model years used in the data base are as follows:
(a) All models manufactured domestically.
(b) All models of imported light duty trucks whose sales exceed 15,000 units annually.
(c) The most popular model of imports whose sales are between 2,000 and 15,000 units annually.
Imports other than the above, with sales of less than 2,000 units, are excluded.

Vehicle configurations are determined by model identification, engine, and transmission, i.e., D100, 318V8, 3 Speed Automatic. Vehicles manufactured by two or more divisions of the same corporation are combined (i.e., Chevrolet Cl0/GMC C-1500) if they are essentially the same vehicle, and are listed as a single vehicle in the data base. Both model names or identification numbers are listed in the model name attribute to simplify identification.

Individual vehicle configurations with a production volume of 2500 units or more are included in the data base. The minimum production volume of a configuration included in the data base is 2500 units. Passenger and cargo van versions of the same model are maintained as separate configurations throughout the data base. Suburban and pickup versions of the same model are also recorded as separate configurations. Production volumes are always listed separately for passenger and cargo vans, suburban and pickup trucks and for four wheel drive and two wheel drive versions of the same vehicle.

Similar body configurations within a model series are grouped, and one body configuration is used to represent the group; i.e., with stepside and fleetside pickups; fleetside is used as the representative vehicle.

Models whose GVWR start at or near $10,000 \mathrm{lbs}$. and go well beyond (i.e., $14,000 \mathrm{lbs}$. ) are excluded from the data base.

Cab and chassis units are combined with their pickup counterparts to form a single configurations, and Cutaway vans are combined with their van counterparts.

Suburban type vehicles include and combine both 2 and 4-door versions.

When there are models available in more than three wheelbases, and the usage of one wheelbase which is basically the same as one of the other wheelbases is very low, then the two are combined. For example, if a Ford 159 inch wheelbase is seven percent, and a Ford 161 inch wheelbase is one percent, then a Ford 159 wheelbase is listed instead as eight percent.

Van models available in cargo and passenger versions are combined, and the attributes peculiar to each of these versions and their production volumes are listed separately.

A configuration of a vehicle available in both two and fourwheel drive is shown as one vehicle configuration. Attribute values, which vary between the two and four-wheel drive versions, and the production volumes of these versions are listed separately and identified by drive version.

Vehicle model configurations produced by manufacturers with low model year productions totals that fall below the 2,500 minimum, are represented by at least one configuration in order to give that corporation proper representation.

### 2.2.2 Selection Example

The following example illustrates the vehicle selection process in detail.

For the 1976 model year, the Plymouth and Dodge Divisions of Chrysler Corporation offered virtually identical trucks. The Dodge version is known as the $B-100$ truck and is available in a cargo (Tradesman) and passenger (Sportsman) configuration. The Plymouth version is known as PB100 Voyager and is only available in a passenger version. Table 2-1 describes the initial configuration selection process.

TABLE 2-1. PRODUCTION TOTALS


Table 2-2 shows the combined production total that is obtained by applying the rule of selection which states that vehicles manufactured by two or more divisions of the same corporations are combined if they are essentially the same vehicle.

TABLE 2-2. COMBINED PRODUCTION TOTAL


Referring to Figures 2-1 and 2-2, the Manufacturers Production Data Collection Sheets, it can be seen that the Dodge/ Plymouth Van has three possible engines and three possible transmissions, giving a total possible vehicle line representations of 9. The Dodge/Plymouth Van is available in two variations, a passenger and a cargo configuration. All engines and all transmissions are available in both configurations, which brings the possible total representative vehicles to l8. If the rule is applied that states that Van models available in cargo and passenger configurations are combined and the attributes peculiar to each configuration and their production volumes are listed separately, then nine (9) configurations represent these vehicles as shown in Table 2-3.

All configurations over 2500 units are represented separately in the data base. Cargo and passenger versions of the same van configuration are combined into one configuration, but the production total for each version is listed separately. Referencing Table 2-3, it is seen that these rules would provide for the combination of lines 1 and 2 with 225 M 3 configuration representing this combination. Similarly, lines 4 and 5 and lines 7, 8, and 9 are combined. The rules would permit the further combination of

TABLE 2-3. INITIAL NINE (9) CONFIGURATIONS FOR 1976 DODGE/ PLYMOUTH VANS.

			roduct	
Line	*Engine/Transmission	Total	Cargo	Passenger
1.	225M3	5314	4974	340
2.	225M4	133	111	22
3.	225A3	10044	8731	1313
4.	318 M 3	8003	7209	794
5.	318M4	207	160	47
6.	318A3	15816	12657	3159
7.	360M3	441	377	64
8.	360M4	13	8	5
9.	360A3	918	662	256
* 255=255 CID engine; M3 = 3 speed manual transmission; A3 $=3$ speed automatic				

the 360 CID vehicles (lines 7,8 and 9$)$ with the 318 A 3 vehicles. However, in the interest of maintaining maximum engine representation the 360 CID engine is represented in the data base also. The resulting five configurations used to represent the 1976 Dodge/Plymouth vans are shown in Table 2-4. This table also shows the production volumes for the cargo and passenger versions.

The vehicles listed in Table 2-4 are those that appear in the data fine and for which all information is given.

In every case, as vehicle model configurations are combined, the total production of the model and model/engine configuration is maintained. Also, in every case, the broadset vehicle model/ engine configuration representation is maintained.

TABLE 2-4. FINAL VEHICLE CONFIGURATIONS SELECTED FOR 1976 DODGE/PLYMOUTH VANS

*Engine/Transmission	Production Totals	
$225 \mathrm{M3}$	Cargo	Passenger
225 A 3	5085	362
318 M 3	8731	1313
318 A 3	7369	841
360 A 3	12657	3159
Total	34889	325
$225=225$ CID engine;	M3	3 speed manual transmission;
A3 $=3$ speed automatic.		

Data collection sheets compiled from manufacturers production records are referenced for all years of Dodge, Plymouth, Ford, and all import cars. The years 1975, 1976, and 1977 for AMC and International, and 1976 and 1977 for Chevrolet/GMC are also supported by these data collection sheets.

Where data for data collection sheets were not available, the best available published and unpublished sources were used to determine production volumes and option penetrations; i.e., Wards Automotive Yearbooks, Automotive News, Almanac Issues, and M.V.M.A. (Motor Vehicle Manufacturers Association) statistical reports. In a very few cases judgement had to be employed to determine production quantities for a specific configuration such as production models which a manufacturer may lump together because of the similarity of the vehicles (i.e., P10, P20, P30 Cheveolet Parcel delivery vans) or for lack of recorded data.

The use of the manufacturer's production data collection sheet is described below.

The data collection sheet contains information relating to the production totals and option penetrations of the light duty truck listed at the top of each sheet. The information contained on these sheets was obtained directly from the manufacturers, rather than published sources, in order to obtain the highest degree of accuracy. The data collection sheet information was used as input for the data recording sheets wherever applicable. The information on the data collection sheets was used to fill the appropriate attributes as well as to assist in the final vehicle selection. The following is a detailed example of how the data sheet was employed and which attributes it filled.

Refer to Figures 2-1 and 2-2, Manufacturers Production Data Collection Sheets for Dodge and Plymouth. Data sheet lines A, 1-7 were used to determine the final vehicle selection and as such fills the following attributes for the 1976 Dodge/Plymouth van. See Section 2.3 for attribute definitions.

Line A - fills attributes

Lines 2, 3 or 4 fill attributes

Lines 5, 6 or 7 fill attribute

Lines 8-11 fill attribute
03) Model Name - Cargo Van
04) Model Name - Passenger Van for all final vehicles.
09) Cubic inch displacement
10) Number of cylinders and arrangement.
06) Transmission type and number of gears.
17) Wheelbase 1
18) Percent of sales Wheelbase 1
19) Wheelbase 2
20) Percent of sales Wheelbase 2
21) Wheelbase 3
22) Percent of sales Wheelbase 3 for each of the vehicles.

100


FIGURE 2-1. MANUFACTURERS PRODUCTION DATA SHEET - DODGE


FIGURE 2-2. MANUFACTURERS PRODUCTION DATA SHEET-PLYMOUTH

Line 12 does not apply to the vehicles in the example but is used to determine the final vehicle selection for models available in a 4 -wheel configuration.

Lines 13 and 14 indicate the total number of Cargo-Vans and passenger vans for checking purposes (i.e., to determine if recorded engines per vehicle configuration match the total number of that configuration (Cargo or Passenger) produced.)

Line 15 fills attribute

Line 16 fills attribute

Line 17 fills attribute

Line 18 fills attribute

Line 19 fills attribute

Lines 20 and 21 fill attributes

Line 22 fills attributes
53) Air conditioning, percentage of sales for each vehicle.
57) Power Disc Brakes, percentage of sales, for each vehicle
60) Power Steering, percentage of sales for each vehicle.
63) AM radio, percentage of sales for each vehicle.
66) AM/FM radio, percentage of sales for each vehicle.
69) Interior trim, percentage of sales for each vehicle.
73) Steel belted radial tires, percentage of sales for each vehicle.

Line 23 docs not apply to the vehicle configurations in the example but fills attribute

Line 24 fills attribute
75) Adjustable steering column percentage of sales for each vehicle when applicable.
77) Tinted glass, percentage of sales for each vehicle.

Line 25 , generally written in on the reverse side of the sheet, fills attributes
29) GVWR 1
30) GVNR 2
31) GVWR 3
for each vehicle, depending on the number of wheelbases available.

The total result of the Manufacturers Production Data Collection Sheet is to fill a minimum of 18 attributes and a maximum of 25 , depending upon how many varieties of a configuration were produced.

## 2. 3 VEHICLE ATTRIBUTE DEFINITIONS

The vehicle attributes selected for this study are listed below with their corresponding definitions. The attributes are listed in field order of the data input and are identified by their field numbers and attribute names.

1. Vehicle Identification Code

The code to identify the vehicle includes the manufacturer, domestic or import designation, GVWR class, body type, and model year, e.g. General Motors (GM), Domestic (D), 0-6000 lbs. (1), pickup (1), 1974 (74).
02. Model Name, 2 Wheel Drive

The manufacturers designated model name for two wheel
drive vehicle, e.g. C-lo.
03. Model Name, 4 Wheel Drive

The manufacturers designated model name for four wheel
drive vehicle, e.g. K-10.
04. Model Name, Cargo Van

The manufacturers designated model name for Cargo Van vehicle, e.g. Tradesman Bloo.
05. Model Name, Passenger Van

The manufacturers designated model name for passenger van vehicle, e.g. Sportsman Blo0.
06. Transmission Type, Number of Gears

Automatic, manual, or semi-automatic and the number of gear ratio changes in forward speed.
07. N/V (std.) (2 Wheel Drive/4 Wheel Drive)

Ratio of engine speed (rpm) divided by vehicle speed (MPH)
with standard tires and gearing; first two digits designate N/V for 2 Wheel Drive, and the next two digits designate $N / V$ for 4 Wheel Drive.
08. N/V (std.) (Cargo Van/Passenger Van)

Ratio of engine speed (rpm) divided by vehicle speed (MPH) with standard tires and gearing; first three digits designate $N / V$ for Cargo Vans, and the next three digits designate $N / V$ for Passenger Van.
09. Cubic Inch Displacement

The volume in cubic inches displaced by one piston as it moves from the bottom to the top of its stroke, times the number of cylinders.
10. Number of Engine Cylinders and Arrangement

Number of cylinders and the arrangement in the cylinder block ( $V$, $L$, or $H$ arrangement) and 8,6 , or 4 cylinders.

R denotes Rotary and the number of chambers is listed. Diesel engine is noted in comments.
11. Compression Ratio

The ratio of maximum volume displaced (volume of a cylinde: plus the volume of the combustion chamber) to the minimum volume
(combustion chamber volume).

## 12. Engine Horsepower

Net horsepower (as defined in SAE standard J 245) is the maximum brake power output of a "fully equipped" engine with all accessories necessary to perform all its intended functions unaided, including, but not limited to, basic built-in components such as intake air system, exhaust system, cooling system, alternator, starter, and emission control equipment.
13. Engine Revolutions per Minute (Horsepower)

The engine revolutions per minute at which engine horsepower is specified.
14. Engine Torque

Net maximum torque in foot pounds of the same "fully equipped" engine as tested for horsepower output.
15. Engine Revolutions per Minute (Torque)

The engine revolutions per minute at which maximum torque is specified.
16. Carburetion and Number of Barrels (STD)

Indicates "Carburetor" (C) and number of barrels on standard engine; or "fuel injection" (FI) if standard.
17. Wheelbase 1

The distance between the centers of the front and rear wheels. The minimum wheelbase for the indicated model. 18. Percentage of Sales 1

The percentage of a model sold in wheelbase 1 form.
19. Wheelbase 2

The distance between the centers of the front and rear
wheels for the next wheelbase configuration over minimum. 20. Percentage of Sales 2

The percentage of $a$ model sold in wheelbase 2 form.
21. Wheelbase 3

The distance between the centers of the front and rear wheels for the longest wheelbase configuration.
22. Percentage of Sales 3

The percentage of a model sold in wheelbase 3 form. 23. Curb Weight 1 (lbs.) ( 2 Wheel Drive/4 Wheel Drive)

The weight of the vehicle in wheelbase 1 form including all standard equipment, spare tire and wheel, all fluids and lubricants to capacity and a full tank of gasoline. (4 digits for 2 Wheel Drive followed by 4 digits for 4 Wheel Drive)
24. Van Curb Weight l (lbs.) (Cargo/Passenger)

The weight of the vehicle in wheelbase 1 form including all standard equipment, spare tire and wheel, all fluids and lubricants to capacity and a full tank of gasoline. (4 digits for Cargo Van followed by 4 digits for passenger van)
25. Curb Weight 2 (lbs.) (2 Wheel Drive/4 Wheel Drive)

The weight of the vehicle as in "Curb Weight l" except the vehicle is in "Wheelbase 2" form. (4 digits for 2 Wheel Drive followed by 4 digits for 4 Wheel Drive)
26. Van Curb Weight 2 (lbs.) (Cargo/Passenger)

The weight of the vehicle, as in "Van curb weight l," except the vehicle is in "Wheelbase 2" form.
(4 digits for Cargo Van followed by 4 digits for passenger van)
27. Curb Weight 3 (lbs.) (2 Wheel Drive/4 Wheel Drive).

The weight of the vehicle, as in "Curb Weight l" except the vehicle is in "Wheelbase 3" form. (4 digits for 2 Wheel Drive followed by 4 digits for 4 Wheel Drive)
28. Van Curb Weight 3 (lbs.) (Cargo/Passenger)

The weight of the vehicle, as in "Van Curb Weight l," except the vehicle is in "Wheelbase 3" form. (4 digits for cargo van followed by 4 digits for passenger van)
29. GVWR 1

The gross vehicle weight rating in pounds with the vehicle in "Wheelbase 1 " form.
30. GVWR 2

The gross vehicle weight rating in pounds with the vehicle in "Wheelbase 2" form.
31. GVWR 3

The gross vehicle weight rating in pounds with the vehicle
in "Wheelbase 3 " form.
32. Cargo Capacity 1 (ft. ${ }^{3}$ )

For enclosed trucks, the volume of the enclosed cargo area. If folding or removable seats are provided, the volume is the maximum with seats folded or removed. For open bodied trucks, the bed area multiplied by a height of 6 feet. In either case the vehicle is in "Wheelbase l" form.
33. Cargo Capacity 2 (ft. ${ }^{3}$ )

The cargo volume as stated in attribute 32 except the vehicle is in "Wheelbase 2" form.
34. Cargo Capacity 3 (ft. ${ }^{3}$ )

The cargo volume as stated in attribute 32 except the vehicle is in "Wheelbase 3 " form. 35. Number of Passengers

The number of passengers including the driver for which the vehicle was designed and for which normal seating accomodation is provided. For all trucks with variable passenger capacity the minimum and maximum number is listed (2 digits for minimum followed by a dash and 2 digits for maximum).
36. Urban Fuel Economy (MPG)

1975 EPA Federal Test Procedure (FTP) cycle urban fuel ecomony equal to:
A. For 1974 models, EPA CVS-1 cycle X $1.045^{l}$ factor.
B. 1973 and prior models; fuel economy from literature, if available, adjusted to 1975 EPA test level.
37. Wheelbase, Fuel Economy

The wheelbase of the vehicle used for fuel economy data.
38. Drive Cycle - Urban

If nct EPA CVS-l will indicate other cycle.
39. Highway Fuel Economy (MPG)

1975 EPA cycle urban economy X $1.42^{1}$ factor for the wheelbase recorded in attribute 37.
40. Drive Cycle - Highway

Indicates drive cycle for above.
41. Composite Fuel Economy (MPG)

[^0]1975 EPA cycle combination urban-highway fuel economy (weighted 55 percent urban, 45 percent highway) equal to 1975 urban economy $x 1.154^{1}$ factor.
42. Catalytic Converter

Is the vehicle equipped with a catalytic converter?
Yes or No answer.
43. Acceleration Time

Time in seconds, for a vehicle to accelerate from
0 to 40 MPH . If 0 to 40 MPH time is not available, 0 to X is used and X is noted in comments.
*44. Model Production Volume (2 Wheel Drive version)
Production Volume of the 2 Wheel Drive version of the vehicle configuration identified in attribute 01.
*45. Model Production Volume (4 Wheel Drive Version)
Production Volume of the 4 Wheel Drive version of the vehicle configuration identified in attribute 01.
*46. Model Production Volume (Cargo Van)
Production Volume of the Cargo Van version of the vehicle configuration identified in attribute 01.
*47. Model Production Volume (Passenger Van)
Production volume of the Passenger Van version of the vehicle configuration identified in attribute 01.
48.

List Price (2 Wheel Drive models)
$1_{\text {SAE Technical Report } \# 75057 \text { "Passenger Car Fuel Economy Trends }}$ Through 1976" by Austin, Michael and Service.
*NOTE: The production volumes include all similar vehicles represented by the specific vehicle configuration described. i.e. The total for all vehicles listed for a specific model year equals the total of LDT manufactured for that model year under 10,000 GVWR.

Base list price of the 2 Wheel Drive vehicle configuration incorporating the described engine and transmission and the most popular Wheelbase. 49. List Price (4 Wheel Drive models)

Base list price of the 4 Wheel Drive vehicle configuration, incorporating the described engine and transmission and the most popular wheelbase.
50. List Price (Cargo Van)

Base list price of the Cargo Van version of the vehicle configuration, incorporating the described engine and transmission and the most popular wheelbase.
51. List Price (Passenger Van)

The base list price of the Passenger Van version of the vehicle configuration incorporating the described engine and transmission and the most popular wheelbase. 52. Highway or Off-Highway (2 Wheel Drive/4 Wheel Drive)

Indicates highway or off-highway configuration, first for the 2 Wheel Drive version and next for the 4 Wheel Drive version. Off-highway vehicles are high chassis height vehicles.
53. Axle clearance (2 Wheel Drive/4 Wheel Drive)

The distance from the bottom of the axle housing to the ground. Two Wheel Drive first then 4 Wheel Drive.
54. Percentage with Air Conditioning

The rate, for the model indicated in attribute 02 , of installation of air conditioning, in percentage of the total production.
55. Air Conditioning Weight (lbs.)

The weight, in pounds, that must be added to the curb weight of the vehicle when air conditioning is installed as a factory option.
56. Cost, Air Conditioning

The cost, in dollars, of the air conditioning option.
57. Percentage with Power Disc Brakes

The rate, for the model indicated in attribute 02, of installation of Power Disc Brakes, in percentage of total production.
58. Power Disc Brakes Weight (lbs.)

The weight, in pounds, that must be added to the curb weight when Power Disc Brakes are installed as a factory option.
59. Cost, Power Disc Brakes

The cost, in dollars, of the Power Disc Brake option.
60. Percentage with Power Steering

The rate of installation of power steering, in percentage of total production for the model indicated.
61. Power Steering Weight (lbs.)

The weight, in pounds, added to the curb weight when power steering is installed as a factory option.
62. Cost, Power Steering

The cost, in dollars, of the power steering option.
63. Percentage with AM Radio

The rate of installation of an AM Radio, in percentage of total production for the model indicated.
74. Cost, Steel Belted Radial Tires

The cost, in dollars, of the Steel Belted Radial tire option.
75. Percentage with Adjustable Steering

The rate of installation of Adjustable Steering, in
percentage of total production for the indicated model.
76. Cost, Adjustable Steering

The cost, in dollars, of the Adjustable Steering option.
77. Percentage with Tinted Glass

The rate of installation of Tinted Glass, in percentage of total production for the model indicated.
78. Cost, Tinted Glass

The cost, in dollars, of the Tinted Glass option (all windows).
79. Comments 1 (maximum 40 characters)

Clarifying information relating to attribute variations or attribute sources.
80. Commentis 2 (maximum 40 characters)

Same as attribute 79.
2.4 DATA BASE DEVELOPMENT

After the selection of the vehicle configurations to be included in the data base and the attributes used to describe these configurations, the actual collection, collation and recording of the data on computer tapes occurs.

This process involves:

1. Identifying and locating sources of reference material and gathering that reference material.
2. Recording data on computer coding sheets.
3. AM Radio, Weight

The weight, in pounds, added to the curb weight when an AM Radio is installed as a factory option.
65. Cost, AM Radio

The cost, in dollars, of the $A M$ radio option.
66. Percentage with $A M / F M$ Radio

The rate of installation of an AM/FM radio, in percentage of total production for the model indicated.
67. AM/FM Radio, Weight

The weight, in pounds, added to the curb weight when an $A M / F M$ Radio is installed as a factory option. 68. Cost, AM/FM Radio

The cost, in dollars, of the AM/FM Radio option.
69. Percentage with Interior Trim

The rate of installation of a special interior trim option, in percentage of a total production for the model indicated.
70. Cost, Interior Trim

The cost, in dollars, of the special interior trim option.
71. Percentage with Exterior Trim

The rate of installation of special exterior trim options, in percentage of total production for the model indicated.
72. Cost, Exterior Trim

The cost, in dollars, of the special exterior trim option.
73. Percentage with Steel Belted Radial Tires

The rate of installation of Steel Belted Radial tires, percentage of total production for the model indicated.
3. Checking coding sheets for accuracy.
4. Transferring input data from coding sheets to a key tape. After the data is transferred, it is key verified.
5. Processing the keyed data into the Datalog directory system.
6. Making formated master list printout and final checking of data for ommissions, key punch errors, etc.
7. Converting Datalog directory output to DOT/TSC tape and master list as required.

### 2.4.1 Data Research

Data, from published sources, covering specific model configurations were difficult to obtain for any of the subject data base years. This problem increased in the earliest years. General vehicle specification data were also more difficult to find for the early years of the study. These data gaps were filled through extensive research in Chilton files, the Philadelphia Public Library's Automotive Library, and automotive manufacturers files.

In some other cases where data was sparce, some extrapolation was necessary. This occured primarily in 1972 for Chevrolet, IHC, and AMC.

For these manufacturers, the 1973 model configuration percentages were applied to the known 1972 production totals. Engine varieties, usage of wheelbase variations, and 4 -wheel drive variants were determined by referencing known industry usage during the 1973 period.

### 2.4.2 Fuel Economy

The fuel economy attributes were filled directly from EPA literature for the 1975 to 1977 period where possible. When EPA Data was used N/V ratio, weight, body, engine, and transmission combinations were matched as closely as possible to the configuration chosen for the data base.

Some road tests were used to supplement available EPA fuel economy information. This was done mostly for the 1972 model year. Though these road tests were sparce, examples were found which indicated the same truck was tested by more than one magazine. In these cases the various testers achieved similar fuel economy results which created some confidence in the data.

The fuel economy rating of a light duty truck has not historically been a very influential characteristic in the prospective purchaser's selection procedure. This, coupled with the fact that road tests data and EPA data correlate very well, indicates that the manufacturers are not inclined, as they are with passenger cars, to supply the testing publications with specially tuned and prepared vehicles.

As a result of this assumption, the road tests data, when used, was recorded as reported by the testing publications. Every effort was made to determine that the road tested vehicle was very similar in weight, type and engine/transmission configuration to the vehicle recorded in the data base.

The fuel economy data available for 1972 LDT vehicles were scarce since no EPA data were available and only a few road tests have been performed on LDT vehicles. The data available for 1975 Ford LDT vehicles was significantly less than other major manufacturers for the 1975 model year. No EPA fuel economoy data was available for any year for GVWR values over 6,000 pounds.

The fact that fuel economy is affected by such a wide variety of factors including type of route traveled, vehicle speed, cold start frequency, accessory equipment use, vehicle weight, N/V ratio, transmission type, aerodynamic characteristics, and driver habits, indicates that the fuel economy figures recorded can only serve as a base line. The many variations cannot be defined in the scope of this research.

The following are the drive cycles used by two publications that road test trucks. The road test cycles of these publications are considered to give reliable information and were referenced
for data base information.

1. Motor Trend/Car Life

A 73 mile public road loop representing approximately $1 / 3$ city, $1 / 3$ suburban and $1 / 3$ highway driving is used. Maximum speeds do not exceed 60 mph . The tank is filled before and refilled afterwards at the same station. The test.loop measures 73.125 miles on $a$ fifth wheel and the testing ambient temperature is $70^{\circ}$ to $80^{\circ} \mathrm{F}$. The motor is warm at start with no special attempts made to gain fuel economy. The vehicle is driven normally, following traffic. The results of this test are considered equal to EPA composite ratings.
2. Popular Science

The vehicle is driven steadily at 45 mph around Bridgehampton (Long Island) New York raceway. This is a 2.5 mile course with many turns and hills intermixed. The test results are considered equal to the EPA composite ratings.

### 2.4.3 Vehicle Performance

Accelerations times were recorded for $0-40$ or $0-60 \mathrm{mph}$. When the time entered in attribute 43 was $0-60 \mathrm{mph}$, this was noted in the comments. Very little acceleration time data was found.

It should also be noted that acceleration times would be materially different if the truck were loaded to its capacity.

No attempt was made to assign acceleration times to vehicles for which data was not available. Hence, very little data is recorded in this area.

### 2.5 ATTRIBUTE INFORMATION SOURCES

The following lists indicate the sources of information for each attribute.
bute No.
01)
02)
03)
04)
05)
$06)$
07)
08)
09)
10)
11)
12)

Attribute Name
Vehicle Identification
Model Name, 2-Wheel Drive Model Name, 4-Wheel Drive Model Name, Cargo Van Model Name, Passenger Van Transmission Type, Number of Gears

N/V (STD) (2 Wheel Drive/ 4 Wheel Drive)

N/V (STD) (Cargo Van/ Passenger Van)

Cubic Inch Displacement

Number of Engine Cylinders

Compression Ratio
Engine Horsepower

## Source

Manufacturer Data Books
and from

Manufacturer Production
Data Information Sheets
sourced from the Manufacturer
Manufacturers Production
Data Information Sheets
Calculated From Information Obtained From Manufacturers Data Book or in the case of Chevrolet, directly from the Data Book

Calculated from Information Obtained from Manufacturers Data Books or in the case of Chevrolet, directly from the Data Book

Manufacturers Production Data Information Sheets and/or Manufacturers Data Books

Manufacturers Production Data Information Sheets and/or Manufacturers Data Books

Manufacturers Data Books
Manufacturers Data BooksAutomotive Industries

bute No.	Attribute Name	Source
13)	Engine Revolutions per Minute (Horsepower)	Manufacturers Data BooksAutomotive Industries
14)	Engine Torque	Manufacturers Data Books and Automotive Data Books
15)	Engine Revolutions per Minute (Torque)	Manufacturers Data BooksAutomotive Industries
16)	Carburetion and Number of Barrels (STD)	Manufacturers Data BooksAutomotive Industries
17)	Wheelbase 1	Manufacturers Production Data Information SheetsManufacturers Data Books
18)	Percentage of Sales Wheelbase 1	Manufacturers Production Data Information SheetsProfessional judgement based on available information
19)	Wheelbase 2	Manufacturers Production Data Information Sheets or Manufacturers Data Books
20)	Percentage of Sales Wheelbase 2	Manufacturers Production Data Information SheetsProfessional judgement based on available information
21)	Wheelbase 3	Manufacturers Production Data Information SheetsManufacturers Data Books
22)	Percentage of Sales Wheelbase 3	```Manufacturers Production Data Information Sheets- Professional judgement basec on available information```
23)	Curb Weight 1 (2 Wheel Drive/4 Wheel Drive)	Manufacturers Data Books
24)	Curb Weight Van 1 (Cargo/Passenger)	Manufacturers Data Books
25)	Curb Weight 2 (2 Wheel Drive/ 4 Wheel Drive)	Manufacturers Data Books

bute No. Attribute Name
26) Curb Weight Van 2
(Cargo/Passenger)
27) Curb Weight 3 (2 Wheel Drive/ 4 Wheel Drive)
28) Curb Weight 3 (CargoPassenger)
29)

GVWR 1 (Most Popular)
30)

GVWR 2 (Most Popular)
31)

GVWR 3 (Most Popular)

32 )
33)
34)
35)
36)
37)
38)
39)

Cargo Volume 1

Cargo Volume 2

Cargo Volume 3

Number of Passengers

Urban Fuel Economy

Wheelbase, Fuel Economy

Drive Cycle-Urban

Highway Fuel Economy

## Source

Manufacturers Data Books

Manufacturers Data Books

Manufacturers Data Books

Manufacturers Production Data Information Sheetsjudgements based on information available

Manufacturers Production Data Information Sheetsjudgement based on information available

Data Information Sheetsjudgement based on information available

Manufacturers Data Books, Edmunds, Calculation

Manufacturers Data Books, Edmunds, Calculation

Manufacturers Data Books, Edmunds, Calculation

Manufacturers Data Books (with normal seating)

EPA Literature, Road Test Publications

EPA Iiterature, Road Test Publications, Judgement

EPA Iiterature, Road Test Publications

EPA Iiterature, Road Test Publications

Attri-
bute No.
40)
52) Highway or Off-Highway (.2 Wheel Drive/4 Wheel Drive)

## Source

EPA Literature, Road Test Publications

EPA Literature, Road Test Publications

Manufacturers Data Book

Road Test and Publications, Edmunds, Manufacturer Spec Sheets

Manufacturers Production Data Information Sheets, Wards

Manufacturers Production Data Information Sheets, Wards)

Manufacturers Production Data Information Sheets, Wards

Manufacturers Production Data Information Sheets, Wards

Edmunds, Auto News

Edmunds, Auto News

Edmunds, Auto News
Edmunds, Auto News
Judgement based on high grounc clearance and intended use by manufacturer and government priorities. Based on information obtained from Manufacturers Data Books

Attri-
bute No. Attribute Name
53) Axle Clearance (2 Wheel Drive/4 Wheel Drive)
54) Air Conditioning, Percentage of Sales
55)
56)
57)
58)
59)
60)
61)
62)
63)
64)
65)
66)
67)
68)
69)
70)

Air Conditioning, Weight
Air Conditioning, Cost
Power Disc Brakes, Percentage of Sales

Power Disc Brakes, Weight

Power Disc Brakes, Cost

Power Steering, Percentage of Sales

Power Steering, Weight
Power Steering, Cost
AM Radio, Percentage of Sales

AM Radio, Weight
AM Radio, Cost
AM/FM Radio, Percentage of Sales

AM/FM Radio, Weight
AM/FM Radio, Cost
Interior Trim,
Percentage of Sales
Interior Trim, Cost

## Source

Manufacturers Data Books

Manufacturers Data Books

Manufacturers Data Books
Edmunds
Manufacturers Production Data Information Sheets, Wards

Manufacturers Data Books

Edmunds

Manufacturers Production Data Information Sheets, Wards

Manufacturers Data Books

## Edmunds

Wards, Manufacturers Production Data Information Sheets

Manufacturers Data Books

## Edmunds

Manufacturers Production Data Information Sheets, Wards

Manufacturers Data Books
Edmunds
Wards, Manufacturers Production
Data Information Sheets
Edmunds

Aたさエiー
bute No．Attribute Name
71）Exterior Trim， Percentage of Sales

72）Exterior Trim，Cost
73）Steel Belted Radial Tires，Percentage of Sales

74）Steel Belted Radial Tires，Cost

Adjustable Steering Percentage of Sales

Adjustable Steering， cost

77）Tinted Glass，Percentage of Sales

78 ）．
79）

80）
Tinted Glass，Cost
Comments 1

Comments 2

## Source

Wards，Manufacturers Productior Data Information Sheets

Edmunds
Wards，Manufacturers Productio： Data Information Sheets

Edmunds

Wards，Manufacturers Production Data Information Sheets

Edmunds

Wards，Manufacturers Production Data Information Sheets

Edmunds
Footnotes relating to other attributes

Footnotes relating to other attributes

2．6 COLLATION AND DATA PROCESSING
Data accumulated during this project was collated and recorded on magnetic tape．Data is delivered on（9）nine track unlabeled tape，at a recording mode or 800 BPI ，conforming to 8－bit EBCDIC interchange code．The Structure Definitions Sheet，File Descrip－ tion，Attribute Codes List，Code Tables，and Body Class Definitions are given in Tables 2－5 to 2－9．

TABLE 2-5. STRUCTURE DEFINITION SHEET

1. Contract
2. Data Title
3. Tape ID
4. Number of Blocks
5. Number of Records

TABLE 2-6. FILE DESCRIPTION (SHEET 1 OF 7)

## FILE DESCRIPTION

FIIE NAME LDT Historical Data Base

FILE SEQ. 01

FIIE ID. \$ Bypass
REC. SIZE 445

DISK ORGANIZATION BLOCK SIZE

```
 4450
```

FIEID TYPES = A-alphanumeric; I-Integer; R-Real

FID	$\begin{array}{\|l} \hline \text { SUB } \\ F L D \\ \hline \end{array}$	FIELD NAME	$\begin{aligned} & \text { POSI: } \\ & \text { FROM } \\ & \hline \end{aligned}$	TON	$\begin{aligned} & \text { \# OF } \\ & \text { BYTES } \end{aligned}$	$\begin{aligned} & \text { FLD } \\ & \text { TYP } \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & \text { POS } \\ & \hline \end{aligned}$	ABBR.	REMARKS
01		Vehicle Ident. Code	1	11	11	A		VID	
		Record \#	1	4	4	I			
		Manufacturer	5	6	2	A	-		See Code Table
		Domestic or Import	7	7	1	A			$\begin{gathered} \text { See code } \\ \text { Table } \\ \hline \end{gathered}$
		GVWR Class	8	8	1	I			See Code Table
		Body Type	9	9	1	I			See Code Table
		Mouel Year	10	11	2	$I$			See Code Table
02		Model Name (2WD)	12	21	10	A		MN2	
03		Model Name (4WD)	22	31	10	A.		MN4	
04		(Cargo   Model Name Van)	32	41	10	A		MNC	
05		Model Name Van)	42	51	10	A		MNP	
06		$\begin{aligned} & \text { Transmission Type! } \\ & \text { \# of Gears } \\ & \hline \end{aligned}$	52	54	3.	A		TR	
	A	Transmission Type	52	52	1	A			
	B	* of Gears	53	54	2	A			
07		N/V STD 2WD/4WD	55	63	9	A		NV4	
	A	N/V STD 2WD	55	58	4	R	1		
	B	Hyphen Separator	59	59	1	A			See   Note 1
	C	N/V STD 4WD	60	63	4	R	1		
08		N/V sid Pass. Van)	64	72	9	A		NVV	
08	A	N/V STD Cargo Van	64	67	4	R	1		

Note l: Hyphen Separator (H/S) - Hyphen will separate 2 distinct entries; if field is not present, entire field will be spaces.

FILE DESCRIPTION
FIIE NAME LDT Historical Data Base
DISK ORGANIZATION N/A
$\qquad$
$\qquad$ FILE SEQ. OI

FIEID TYPES = A-alphanumeric; I-Integer; R-Real

FID	$\begin{aligned} & \text { SUB } \\ & \text { FLD } \end{aligned}$	FIELD NAME	$\begin{aligned} & \text { POSI: } \\ & \text { FROM } \end{aligned}$		$\begin{aligned} & \text { OF } \\ & \text { BYTES } \end{aligned}$	$\begin{aligned} & F I D \\ & T Y P \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & \text { POS } \end{aligned}$	ABBR.	REMARKS
28		Curb Weight Van 3 (Cargo/Pass.)	159	167	9	A	0	C3V	
	A	Curb Weight Van 3 (Cargo)	159	162	4	I	0		
	B	H/S	163	163	1	A	0		See Note 1
	C	Curb Weaght van 3 (Pass.)	164	167	4	I	0		
29		GVWR 1	168	171	4	I	0	VW1	
30		GVWR 2	172	175	4	I	0	VW2	
31		GVWR 3	176	179	4	I	0	VW3	
32		Cargo Volume 1	180	183	4	I	0	CCl	
33		Cargo Volume 2	184	187	4	I	0	CC2	
34		Cargo Volume 3	188	191	4	I	0	CC3	
35		\# of Passengers	192	196	5	A	0	PAS	
	A	Min. \#	192	193	2	I	0		
	B	H/S	194	194	1	A	0		See   Note 1
	C	Max. \#	195	196	2	I	0		
36		Urban Fuel Econ.	197	200	4	R	1	UFE	
37		Wheelbase/ Euel Economy	201	203	3	I	0	WFE	
38		Drive Cycle-Urban	204	216	13	A	0	DCU	
39		Highway Fuel Econ.	217	220	4	R	1	HFE	
40		Drive Cycle fighway	221	233	13	A	0	DCH	
41		Composite Fuel Economy	234	237	4	R	1	CFE	

TABLE 2-6. FILE DESCRIPTION (SHEET 5 OF 7)

FIIE DESCRIPTION
FIIE NAME IDT Historical Data Base

FILE SEQ. 01 _B
FIIE ID. \$ Bypass
REC. SIZE 445
DISK ORGANIZATION N/A BLOCK SIZE 4450

FIEID TYPES = A-alphanumeric; I-Integer; R-Real

FID	$\begin{array}{\|l} S U B \\ F I D \\ \hline \end{array}$	FIELD NAME	$\begin{aligned} & \text { POSIT } \\ & \text { FROM } \end{aligned}$		$\begin{aligned} & \# \text { OF } \\ & \text { BYTES } \end{aligned}$	$\begin{aligned} & \text { FID } \\ & \text { TYP } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { DEC } \\ \hline \text { POS } \\ \hline \end{array}$	ABBR.	REMARKS
42		Catalytic Converten	238	240	3	A	0	CAT	
43		Acceleration Time	241	244	4	R	1	ACC	
44		Model Production Volume (2WD)	245	250	6	R	2	MP 2	Thousand
45		Model Production Volume (4WD)	251	256	6	R	2	MP 4	Thousand
46		Model Production   Volume (Cargo)	257	262	6	R	2	MPC	Thousand
47		Model Production   Volume (Pass.)	263	268	6	R	2	MPP	Thousand
48		List Price (2WD)	269	273	5	I	0	LP2	
49		List Price (4WD)	274	278	5	I	0	LP4	
50		List Price (Cargo)	279	283	5	I	0	LPC	
51		List Price (Pass.)	284	288	5	I	0	LPP	
52		Highway or Off-Highway	289	295	7	A	0	HOH	
	A	$\mathrm{HOH}-2 \mathrm{WD}$	289	291	3	A	0		
	B	H/S	292	292	1	A	0		$\begin{aligned} & \hline \text { See } \\ & \text { Note } 1 \end{aligned}$
	C	HOH - 4WD	293	295	3	A	0		
53		$\begin{aligned} & \text { Axle Clearance } \\ & \text { (2WD/4WD) } \\ & \hline \end{aligned}$	296	302	7	A	0	AC2	
	A	2WD	296	298	3	R	1		
	B	H/S	299	299	1	A	0		$\begin{aligned} & \hline \text { See } \\ & \text { Note } 1 \end{aligned}$
	C	4WD	300	302	3	R	1		
54		Air Cond. \%	303	304	2	$I$	0	PAC	
55		Air Cond. Weight	305	307	3	I	0	ACW	

TABLE 2-6. FILE DESCRIPTION (SHEET 6 OF 7)

FILE DESCRIPTION
FILE NAME $\qquad$ IDT Historical Data Base

DISR ORGANIZATION $\qquad$ $N / A$

FILE SEQ. 01
$\qquad$ 1 BLOCK SIZE 4450

FIELD TYPES = A-alphanumeric; I-Integer; R-Real

FLD	$\begin{aligned} & \text { SUB } \\ & \text { FLD } \end{aligned}$	FIELD NAME	$\begin{aligned} & \text { POSIT } \\ & \text { FROM } \end{aligned}$		T OF	$\left[\begin{array}{l} F I D \\ T Y P \end{array}\right]$	$\begin{array}{l\|} \hline \text { DEC } \\ \text { POS } \end{array}$	ABBR.	REMARKS
56		Air Cond. Cost	308	310	3	I	0	CAC	
57		$\begin{aligned} & \text { Power Disc } \\ & \text { Brakes, \% } \\ & \hline \end{aligned}$	311	312	2	I	0	PDB	
58		Power Disc Brakes, Weight	313	315	3	I	0	PDW	
59		$\begin{aligned} & \text { Power Disc } \\ & \text { Brakes, Cost } \end{aligned}$	316	318	3	I	0	CPD	
60		Power Steering, \%	319	320	2	I	0	PPS	
61		Power Steering, Weight	321	323	3	I	0	PSW	
62		$\begin{aligned} & \text { Power Steering, } \\ & \text { Cost } \end{aligned}$	324	326	3	I	0	CPS	
63		AM Radio \%	327	328	2	I	0	PAM	
64		AM Radio Weight	329	330	2	I	0	AMW	
65		AM Radio Cost	331	333	3	I	0	CAR	
66		AM/FM Radio \%	334	335	2	I	0	AFR	
67		AM/FM Radio Weight	336	337	2	I	0	AFW	
68		AM/FM Radio Cost	338	340	3	I	0	AFC	
69		Interior Trim \%	341	342	2	I	0	PIT	
70		Interior Trim Cost	343	345	3	I	0	CIT	
71		Exterior Trim \%	346	347	2	I	0	PET	
72.		Exterior Trim Cost	348	350	3	I	0	CET	
73		$\begin{aligned} & \text { Steel Belt } \\ & \text { Tires q } \\ & \hline \end{aligned}$	351	352	2	I	0	PSB	
74		Steel Belt Tires Cost	353	355	3	I	0	SBC	
75		Adjustable Steering \%	356	357	2	I	0	ASP	

FILE DESCRIPTION
FILE NAME $\qquad$ IDT Historical Data Base FILE SEQ. 01 $\mathrm{N} / \mathrm{A}$
 -Integer; R-Real

FLD	$\begin{aligned} & \text { SUB } \\ & \text { FID } \end{aligned}$	FIELD NAME	$\begin{aligned} & \text { POSII } \\ & \text { FROM } \end{aligned}$	ION	$\begin{aligned} & \# \mathrm{OF} \\ & \text { BYTES } \end{aligned}$	$\begin{aligned} & \text { FLD } \\ & \text { TYP } \end{aligned}$	$\begin{aligned} & \mathrm{DEC} \\ & \mathrm{POS} \end{aligned}$	ABBR.	REMARKS
76		Adjustable Steering Cost	358	360	3	I	0	ASC	
77		Tinted Glass \%	361	362	2	I	0	PTG	
78		Tinted Glass Cost	363	365	3	I	0	CTG	
79		Comments 1	366	405	40	A	0	COM	
80		Comments 2	406	445	40	A	0	CO 2	
.									

TABLE 2-7. ATTRIBUTE CODE LIST (SHEET 1 OF 4)
ATTRUBUTE NAME CODE

1) Vehicle Identification Code ..... VID
2) Model Name, 2 Wheel Drive ..... MN2
3) Model Name, 4 Wheel Drive ..... MN4
4) Model Name, Cargo Van ..... MNC
5) Model Name, Passenger Van ..... MNP
6) Transmission type, Number of Gears ..... TR
7) N/V (STD) (2 Wheel Drive/4 Wheel Drive) ..... NV4
8) $N / V$ (STD) (Cargo Van/Passenger Van) ..... NVV
9) Cubic Inch Displacement ..... CID
10) Number of Engine Cylinders and Arrangement ..... CYI
11) Compression Ratio ..... $C R$
12) Engine Horsepower ..... HP
13). Engine Revolutions per Minute (Horsepower) ..... RPM
13) Engine Torque ..... TOR
14) Engine Revolution per Minute (Torque) ..... RMT
15) Carburetion and Number of Barrels (STD) ..... ISF
16) Wheelbase 1 ..... WB1
17) Percentage of Sales 1 ..... PSI
18) Wheelbase 2 ..... WB2
19) Percentage of Sales 2 ..... PS2
20) Wheelbase 3 ..... WB3
21) Percentage of Sales 3 ..... PS3
22) Curb Weight 1 (2 Wheel Drive/4 Wheel Drive ..... CW1
23) Curb Weight Van 1 (Cargo/Passenger) ..... ClV

TABLE 2-7. ATTRIBUTE CODE LIST (SHEET 2 OF 4)
25) Curb Weight 2 (2 Wheel Drive/4 Wheel Drive) ..... Cw2
26) Curb Weight,Van 2 (Cargo/Passenger) ..... C2V
27)
Curb Weight 3 (2 Wheel Drive/4 Wheel Drive) ..... CW3
28) Curb. Weight, Van 3 (Cargo/Passenger) ..... C3V
29) GVWR 1 ..... VWI
30) GVWR 2 ..... VW2
31) GVWR 3 ..... VW3
32) Cargo Volume 1 ..... CCl
33) Cargo Volume 2 ..... CC2
34) Cargo Volume 3 ..... CC3
35) Number of Passengers ..... PAS
36) Urban Fuel Economy ..... UFE
37) Wheelbase, Fuel Economy ..... WFE
38) Drive Cycle - Urban ..... DCU
39) Highway Fuel Economy ..... HFE
40) Drive Cycle - Highway ..... DCH
41) Composite Fuel Economy ..... CFE
42) Catalytic Converter (If used) ..... CAT
43) Acceleration Time (0-40 MPH) ..... ACC
44) Model Production Volume (2 Wheel Drive) ..... MP 2
45) Model Production Volume (4 Wheel Drive) ..... MP 4
46) Model Production Volume (Cargo Van) ..... MPC
47) Model Production Volume (Passenger Van) ..... MPP
48) List Price (2 Wheel Drive) ..... LP 2
49) List Price (4 Wheel Drive) ..... LP4

TABLE 2-7. ATTRIBUTE CODE LIST (SHEET 3 OF 4)
50) List Price (Cargo Van)

LPC
51) List Price (Passenger Van)
52) Highway or Off-Highway (2 WD/4 WD)

HOH
53) Axle Clearance (2 WD/4 WD)

AC2
54) Air Conditioning, Percentage of Sales

PAC
55) Air Conditioning, Weight

ACW
56) Air Conditioning, Cost

CAC
57) Power Disc Brakes, Percentage of Sales PDB
58) Power Disc Brakes, Weight PDW
59) Power Disc Brakes, Cost CPD
60) Power Steering, Percentage of Sales PPS
61) Power Steering, Weight PSW
62) Power Steering, Cost CPS
63) AM Radio, Percentage of Sales PAM
64) AM Radio, Weight AMW
65) AM Radio, Cost CAR
66) AM/FM Radio, Percentage of Sales AFR
67) AM/FM Radio, Weight AFW
68) AM/FM Radio, Cost AFC
69) Interior Trim, Percentage of Sales PIT
70) Interior Trim, cost CIT
71) Exterior Trim, Percentage of Sales PET
72) Exterior Trim, Cost CET
73) Steel Belted Radial Tires, Percentage of PSB Sales
74) Steel Belted Radial Tires, Cost

TABLE 2-7. ATTRIBUTE CODE LIST (SHEET 4 OF 4) ATTRIBUTE NAME
75) Adjustable Steering, Percentage of Sales ..... ASP
76) Adjustable Steering, Cost ..... ASC
77) Tinted Glass, Percentage of Sales ..... PTG
78) Tinted Glass, Cost ..... CTG
79) Comments 1 ..... COM
80) Comments 2 ..... CO 2

ATTR.
NO.

1) IDENTIFICATION CODE
MANUFACTURERS (Nameplate) CODE
General Motors Corporation ..... GM
Chrysler Corporation ..... CH
Ford ..... FM
American Motors Corp. (Jeep) ..... AM
International Harvester Corp. ..... IH
Toyo Kogo (Mazda) ..... TK
Nissan (Datsun) ..... NI
Toyota ..... TO
Volkswagen ..... VW
POINT OF ORIGIN ..... CODE
Domestic ..... D
Imported ..... I
GVWR CLASS ..... CODE
0-6000 ..... 1
6001-8500 ..... 2
8501-10,000 ..... 3
$0-6000+6001-8500$ ..... 4
6001-8500 + 8501-10,000 ..... 5
BODY TYPE ..... CODE
Pick-up ..... 1
Suburban ..... 2
Utility ..... 3
Van ..... 4
Multi-Stop ..... 5
MODEL YEAR CODE
1977 ..... 77
1976 ..... 76
1975 ..... 75
1974 ..... 74
1973 ..... 73
1972 ..... 72

TABLE 2-8. CODE TABLES (SHEET 2 OF 2)
ATTR.
NO.
06) TRANSMISSION TYPE, NUMBER OF GEARS

TYPE CODE
Manual M
Automatic A
Semi-Automatic S
Over-drive 0
NUMBER OF GEARS CODE
2
2
3
3
4
4
5
5
10) NUMBER OF ENGINE CYLINDERS AND ARRANGEMENT ARRANGEMENT CODE

In-line
L
"V" Type
V
Horizontally Opposed H
Rotary
R

NUMBER OF CYIINDERS CODE
2
4
2
4
6
6
8
8
16) CARBURETION and NUMBER OF BARRELS

TYPE
CODE
Carburetor
C
Fuel Injection
NUMBER OF BARRELS
CODE
1
1
2
3
3
4

TABLE 2-9. BODY CLASS DEFINITIONS DOT LIGHT DUTY TRUCK DATA BASE

File
Code
"l" Pickup, 2 or 4 Wheel Drive
"2" Suburban, 2 or 4 Wheel Drive

"3" | Utility, 2 or 4 Wheel |
| :--- |
| Drive |

"4" $\quad$ Van (Passenger or Cargo)

Body Class
Pickup, 2 or 4 Wheel Drive

Van (Passenger or Cargo)

Multi-Stop

## Definition

A conventional truck with a 2 or 4-door cab and an open top cargo carrying bed.

A conventional cab vehicle with extended hood on light truck chassis with passenger and cargo room within the body. A truck version of a passenger station wagon.

Any vehicle normally referred to as a rough terrain or "Jeep" type. Vehicle is characterized as having a high ramp breakover angle and very little front and rear overhang. Equipped for off-highway as well as onhighway use.

A somewhat rectangular vehicle without the traditional long hood of conventional trucks, having passenger and cargo capacity contained within the body. Has relatively high cargo capacity.

Similar to a Van but much higher and with standard seating capacity limited to 1 or 2 passengers including the driver (i.e. the typical bread van or commercial laundry delivery van). Vehicle has none of the qualities of a passenger car. Is intended, primarily, for low speed intracity delivery.

Data was collected, correlated, and collated for the defined attributes of the applicable physical, operating, performance, and market characteristics of light duty trucks for the subject model years 1972 and 1975 through 1977. These vehicle configurations represent the total light duty fleet as sold in the United States in these model years.

Characteristics were documented for over 680 vehicle configurations for all attributes for which information was available or could be reasonably extrapolated from available information. With the addition of this data base, the ability of the Department of Transportation/Transportaton Systems Center to understand past and current trends in the light duty truck market is greatly enhanced. This, coupled with other economic studies, will allow DOT/TSC to predict future trends and possible reactions to outside influences, regulations, etc. that may occur.

Although this data base combines physical, operating, performance, and market characteristics which are representative of the United States light duty truck market for 1972 and 1975 through 1977, the usefulness of the information would be enhanced by expanding the data base coverage. It is recommended that the data base be expanded to include all years, from 1955 to the present. The light duty truck market has developed rapidly in different areas at different times during this period. The wider base is desirable as it would allow close examination and tracking of the light duty truck over an expanded period of truck and economic changes.

Other studies which would provided additional insight into the light duty trucks' place in the overall transportation picture would be:

1. The uses of light duty trucks, i.e., commercial, personal recreation or combination.
2. The types and magnitudes of loads usually carried in different makes and models of light duty trucks.
3. The effects of cargo load on light duty truck fuel economy, including a study of operation and load cycles.
4. An analysis of the increased use of light duty truck vehicles, and which light duty truck vehicles may be replacing other types of vehicles in the transportation market with identification of the replaced vehicles.

APPENDIX A<br>REPORT OF NEW TECHNOLOGY

This report concerns the collection of existing data on light duty truck characteristics. Although some extrapolation and/or interpretation of data was used by the contractor as part of the methodology for task completion, no "subject inventions" were achieved during the performance of work on this contract.
$\begin{array}{r}\text { HE } 18.5 \text {-A } \\ \text { NHTSA- } \\ \text { Cantwell, } \\ \text { Light duty } \\ \text { characheri } \\ \text { data base. } \\ \hline \\ \hline\end{array}$

F

POSTAGE And fees paid
U.E. DEPARTMENT OF IAANSPOATATION
GI3
RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION
MEMOALL SOUARE. CAMBAIDGE. MA. 02142
official eusiness
pemalty fok paivate uce. 0300

##  <br> ロロ1899？ <br> DOT LIBRARY <br>  <br> ロロ」ロップ」 <br> 

## 1


[^0]:    $l_{\text {SAE Technical Report } \# 75057 \text { "Passenger Car Fuel Economy }}$ Trends Through 1976" by Austin, Michael and Service.

